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We develop a time-dependent perturbation theory for nonequilibrium inter- 
acting particle systems. We focus on models such as the contact process which 
evolve via destruction and autocatalytic creation of particles. At a critical value 
of the destruction rate there is a continuous phase transition between an active 
steady state and the vacuum state, which is absorbing. We present several 
methods for deriving series for the evolution starting from a single seed particle, 
including expansions for the ultimate survival probability in the super- and sub- 
critical regions, expansions for the average number of particles in the subcritical 
region, and short-time expansions. Algorithms for computer generation of the 
various expansions are presented. Rather long series (24 terms or more) and 
precise estimates of critical parameters are presented. 

KEY WORDS: Interacting particle systems; nonequilibrium critical points; 
series expansions; Pad6 analysis. 

1. INTRODUCTION 

The s tudy of many-pa r t i c l e  systems is an i m p o r t a n t  p rob lem in m a n y  
branches  of physics,  chemistry,  b io logy,  and  even sociology.  (1'2) Whi le  
equi l ib r ium stat is t ical  mechanics  has deve loped  in great  depth  and  a 
canonica l  descr ip t ion  is at  hand,  no  such unifying a p p r o a c h  exists for non-  
equi l ib r ium systems. Since the s teady-s ta te  p robab i l i t y  d i s t r ibu t ion  is not  
k n o w n  a priori ,  analysis  of  nonequ i l ib r ium systems mus t  s tar t  f rom the 
dynamics .  Of pa r t i cu la r  interest  are  systems exhibi t ing  nonequ i l ib r ium 
phase  t ransi t ions .  N o n e q u i l i b r i u m  cri t ical  po in ts  have m a n y  features in 
c o m m o n  with  equ i l ib r ium cri t ical  phenomena :  long-range  corre la t ions ,  a 
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well-defined order parameter, and singularities characterized by critical 
exponents. 

Present knowledge about nonequilibrium phase transitions is mainly 
based upon Monte Carlo simulations, (3-1~ mean-field theory (MFT), (11'12) 
field-theoretic renormalization group (RG) methods, (13-17) and series 
expansions. (18-21~ While MFT often yields qualitatively correct phase 
diagrams, (1~'12) it does not provide accurate results for critical parameters. 
More progress has been achieved via RG methods, (13 17) but while these 
methods are successful in predicting the universality classes for non- 
equilibrium second-order phase transitions in simple models, they are not 
very effective in determining critical parameters, and they cannot be used 
to predict nonuniversal properties. The utility of field theories in dis- 
tinguishing nonequilibrium universality classes for more complex models 
has been cast into doubt. (16) Series expansions (18 21) have proven very 
efficient tools for calculating the critical parameters, and also provide 
information about off-critical behavior. The method developed in this 
paper yields high-order series expansions for the asymptotic behavior 
of nonequilibrium systems exhibiting a continuous transition into an 
absorbing state. 

In this paper we consider stochastic lattice models which evolve via 
annihilation and autocatalytic creation of particles. As there is no spon- 
taneous creation of particles, the vacuum state is absorbing. Evidently, any 
finite system will eventually become trapped in this state. In addition to 
this trivial state, the system may possess (in the infinite-size limit) a non- 
trivial ("active") steady state, with a nonzero average concentration p of 
particles, when the annihilation rate ). is sufficiently small. The models 
studied in this paper exhibit a continuous phase transition from the active 
to the absorbing state at some critical value 2 c. The steady-state concentra- 
tion of particles (which is the appropriate order parameter) decays 
asymptotically as p oc ( 2 c - 2 )  B when 2--,2;-. One of the major 
achievements in the study of nonequilibrium phase transitions is the 
discovery that a wide variety of models exhibiting this kind of transition 
belong to the same universality class. Among these models one could 
mention the contact process (CP), (22'23) Schl6gl's first and second 
models, (3,13,16, 24) directed percolation (DP),(4' 14,2s, 26) Reggeon field theory 
(RFT), (3'18) and the ZGB model. (5'6) Studies of related models via com- 
puter simulations (7 10) and steady-state series expansions (~9'2~ demonstrate 
the robustness of'this universality class against a wide range of changes in 
the local kinetic rules, such as multiparticle processes, diffusion, and 
changes in the number of components. So there is substantial evidence in 
favor of the hypothesis ~13' 16,17) that RFT is the generic critical behavior for 
systems with a scalar order parameter and a single absorbing state. This 



Time-Dependent Perturbation Theory for Nonequilibrium Lattice Models 91 

universality class is characterized by the order-parameter exponent 
f l~0.277 for d =  1 + 1 (18'2~ (one space and one time dimension). 

In this paper we employ an operator formalism as a convenient means 
for describing the evolution of interacting particle systems. Starting from 
the master equation, we derive a perturbative expansion for the long- and 
short-time behavior of quantities such as the survival probability and the 
mean particle number, when evolving from an initial state with a single 
seed particle. For  a class of one-dimensional models we have devised a 
computer algorithm which enables us to obtain rather long series for 
time-dependent properties leading to very precise estimates of critical 
parameters. 

Preliminary results on the time-dependent perturbation theory for the 
one-dimensional A model were presented recently in summary form. (27~ In 
this paper we explain the details of the method and extend it to incorporate 
several new features. We apply the method to several one-dimensional 
systems with different evolution rules. The results very strongly support the 
notion of universality, i.e., the critical behavior does not depend on details 
of the evolution rules. The remainder of this paper is organized as follows. 
In Section 2 we introduce the models to be studied. The scaling behavior 
of the models is described in Section 3. An operator formalism for the 
master equation is presented in Section 4. In Section 5 we derive the time- 
dependent perturbation theory, and it is applied to the one-dimensional A 
model in Section 6. An example of the algorithms used to derive the actual 
series is described in Section 7 and the corresponding Fortran program is 
listed in the Appendix. The various series are listed in Section 8, which also 
contains the results of our Pad6 approximant analysis. Section 9 contains 
a brief summary and discussion. 

2. THE C O N T A C T  PROCESS A N D  RELATED MODELS 

The systems considered in this work are stochastic lattice models or 
interacting particle systems (=) evolving according to a Markov process with 
local, intrinsically irreversible transition rules. We restrict our attention to 
one-component models in which each site can be either vacant or occupied 
by a single particle. The configuration of the system is characterized by a 
set of occupation variables {ai} (i ~ Z d, with ai = 0, 1 corresponding to site 
i vacant or occupied, respectively). The model evolves via the following 
elementary processes: annihilation of particles at rate 2 independent of the 
states of other sites, and autocatalytic creation of particles at vacant sites, 
with a rate depending on the number of occupied neighbors. 

Perhaps the simplest such model is the contact process (CP). (23~ It is 
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closely related to Schl6gl's (first) model (24) of an autocatalytic chemical 
reaction, to directed percolation in ( d+  1) dimensions, (25) and to Reggeon 
field theory. (3' 18) In the CP, particles are annihilated at rate 2. The creation 
rate at a vacant site is n o / n  C, where n o is the number of occupied nearest 
neighbors and nc is the total number of nearest neighbors. The CP has an 
active steady state for all d~> 1, when 2 ~< 2c(d). (22'23~ A number of rigorous 
results have been proven for the CP(22); in particular, the phase transition 
is known to be continuous. (28) In addition, there are rigorous bounds on 
2c. Series expansions (2~ for the steady-state density of particles in one- 
dimensional systems yield 2c ~- 0.3032 and/~ - 0.277, placing the CP in the 
RFT universality class. (18~ 

We have studied several variants of the contact process. The A model, 
introduced (19) as a simplified model for catalytic surface reactions (5) (for 
this interpretation to be valid one has to interchange the role played by 
vacancies and particles). The A model differs from the CP only in that 
vacancies are filled at unit rate provided at least one nearest neighbor is 
occupied. (There is no creation if all neighbors are empty.) Monte Carlo 
simulations (19) and steady-state series expansions (~9'2~ for d =  1 revealed 
that the A model has a critical point at 2c ~-0.5741 with critical exponent 
/ 3 -  0.277, again reflecting RFT critical behavior. Another closely related 
model is the N3 model, which is identical to the CP except that vacancies 
with one occupied and one vacant nearest-neighbor become occupied at 
rate 1/4. The N3 model was originally studied in ref. 20 because MF T 
predicted that it belonged to a new universality class. Steady-state series 
expansions showed, however, that 2~_0.1621 and / ~ 0 . 2 7 9 .  Thus, we 
expect the N3 model to belong to the RFT universality class. 

3. S C A L I N G  B E H A V I O R  

In this section we review the scaling behavior of the contact process 
and similar models in order to motivate the perturbation expansions we 
have developed. We are primarily interested in describing the behavior 
close to critical points, and in particular the exponents characterizing this 
behavior. Both 2c and various critical exponents, including //, can be 
obtained from the long-time behavior of certain quantities. 

Following the work of Grassberge r and de la Torre, (3) we consider the 
asymptotic behavior of the models when starting at t = 0 with a single seed 
particle at the origin, and 2 ~ 2 c. According to the scaling hypothesis, one 
expects that any function of x, t, and A (where A = 2 c -  2) depends on 
these variables only through x 2 / t  z and A �9 t 1/~, times some power of x 2, t, or 
A. Here v and z are critical exponents. Notice that v is the vii of directed 
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percolation and that z is not the usual critical exponent from dynamic 
critical phenomena. 

For  the particle density one expects 

n(x, t) oc t ~ aZ/2F(x2/tz, At 1/~) (1) 

and for the survival probability, i.e., the probability that the system has not 
entered the vacuum state at time t, one expects 

P(t) oc t-~(~(At 1/~) (2) 

where t/ and 6 are further critical exponents, while F and ~b are universal 
scaling functions. 

From Eq. (1) we find for the mean number of particles ~(t) and the 
mean-square distance of spreading _R2(t) 

and 

ft(t) = f ddx p(x, t) oC tnf(At 1/v) (3) 

1 
/~2(t) = ntl)~ f dax x2p(x' t) oc tZg(At 1/~) (4) 

From Eqs. (2)-(4) we immediately see that if ~b(y), f (y ) ,  and g(y) are 
nonsingular at y = 0 ,  the asymptotic behavior of P(t), ~(t), and /~2(t) 
as t--, oo at 2 c determines the critical exponents 6, t/, and z. Numerous 
simulations(3.4.6 8, lo,29) support the scaling hypothesis outlined above. 

Let us now turn our attention to off-critical behavior. In the super- 
critical regime (2<2c)  we see that by setting O ( y ) =  y-6V~(y) we may 
rewrite Eq. (2) as 

e(t)  oc ~J~o(at ~/~) (5) 

In the supercritical region there is a finite chance of survival. Thus, since 
Poo - lim, ~ o, P(t) is finite, limy ~ oo 0(Y) is finite, too, and we get 

Poo oc A v6 (6) 

It can, however, be shown (3) that Po~ and p are governed by the same 
critical exponent, leading to the important relation 

~=v6 (7) 



94 Jensen and Dickman 

Turning to the subcritical regime (2 > 2c), we note that far from the critical 
point the correlations are short-ranged; one therefore expects an exponen- 
tially vanishing chance of survival. This can only be the case if 

~b(y) oc ( -y )aV e -b(-y)~ for y --} -oo  

where b is a constant. When this is inserted in Eq. (2) we find 

P(t)  oc ( - A )  ~ e -b(-J)~t 

Taking the Laplace transform of this relation gives 

(8) 

(9) 

P(0) oc ( - A )  ~-~ (11) 

where we have used Eq. (7). 
Likewise we expect that the mean particle number decays exponen- 

tially: 

f ( y )  oc ( - - y )  ~ e -~-y)~ for y--} --oo (12) 

Inserting this result in Eq. (3) and taking the Laplace transform yields 

~(0) ~ (-A) v(~+.~ (13) 

We expect that a surviving event will move in space according to a normal 
diffusion process, which leads to 

g(y )  oc (_y )v (1  z) for y---} --oo (14) 

/~2(t) grows linearly with t and it is therefore not easy to study its 
asymptotic behavior. Instead we study _~2(t)=if(t)/~2(t). From Eqs. (12) 
and (14) we find that 

J(2(t) oc ( - A )  v(1-z-q) te -C( ~v, (15) 

Which, after performing the Laplace transform, yields 

[s + c ( _ A y ] 2  (16) 

and letting s--* 0, we find that 

f o  ( -  a)v~ 
P(s) = P(t) e s, dt oc (10) 

s + b ( - A )  v 
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and thus 

22(0) OC (--A) -v(l+z+*/) (17) 

We have shown that by studying the asymptotic evolution of an ensemble 
of systems, each starting from a single "seed" particle, one may determine 
a set of critical exponents characterizing the model. As noted, this 
approach has been employed extensively in Monte Carlo simulations; in 
the remainder of this paper we develop series expansion methods for 
studying this evolution. 

4. O P E R A T O R  F O R M A L I S M  

Markov processes in many-particle systems may be conveniently 
described via an operator formalism. (3~ In this paper we use the 
formalism of ref. 20 in which only single occupancy of sites is allowed. 
The basis states of a given site i s Z  d are [~i) with o5=0, 1 when site i is 
vacant or occupied, respectively. Any configuration {ei} of the system can 
be written as a direct product 

{~w/}> : I~ I~i> (lS) 
i ~ Z  d 

The basic inner product is gwen by 

({a ,}[{cr ;})=  1-I 6~,.< (19) 
i e  Z d 

Creation and annihilation operators for site i are defined in the obvious 
manner, 

A~ [a~)= ( 1 - a ~ ) [ o , +  1 ) 
(20) 

A, lai) =~i  I~i -  1) 

The state of the system at time t is 

[gt(t)) = ~ p({ai) ,  t ) [ {a , } )  (21) 

where the sum is over all configurations and P({~i}, t) is the probability 
distribution on the configuration space. Only states I gt) that satisfy 
positivity and normalization are physically relevant. These conditions are 
readily expressed as 

( {~,}[ ~ )  i> 0, V{o-,} (22) 

822/71/I-2-7 
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and 

({~ri} I ~ )  = 1 (23) 

The evolution of the probability distribution is governed by the master 
equation 

d I ~u(t)> 
S I~(t)} (24) 

dt 

which has the formal solution (given that S is time independent) 

] ~(t) ) = eStl~(O)} (25) 

where I ~u(0)) is the initial probability distribution. 
For the contact process and related models, the evolution operator S 

can be broken up in various ways that suggest a perturbative approach. 
Specifically for the A model we may write 

S = 2 W +  V (26) 

where 

W= ~ (1-A~)A i (27) 
i ~  Z d 

and 

V= ~ (1-Ai)A~(1-[IAjA]) (28) 
i ~  Z d j 

where the product is over all nearest neighbors j of site i. 
In this decomposition W only annihilates particles and V only creates 

particles. Next we consider the effects of the operators V and W on various 
configurations. W is simplest: operating on a configuration (cg) containing 
r occupied sites, it gives a sum of r configurations (c~,) (each having one 
of the r sites vacated), minus r times (cg) itself: 

r 

W(Cg) = ~ (cg;) _ r(Cg) (29) 
i = 1  

Consider a configuration (cg) in which there are q vacant sites which are 
nearest neighbors of a particle. Operating on such a configuration, V yields 
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a sum of q configurations (~") (each having one of the q vacancies now 
occupied), minus q times the original configuration: 

q 

V(C~) = ~ (~;') - q@) (30) 
i = 1  

Note that both W and V annihilate the vacuum state [0). 

5. PERTURBATION THEORY 

There are several ways of expanding Eq. (25), e.g., in terms of t (short- 
time expansion), in terms of 2, or in kt=2 -1. The expansion in powers of 
t is obtained simply by chosing a value for 2 (the obvious choice being 2c 
as found from one of the other expansions) and then truncating the series 
obtained from Eq. (25) at some order n: 

n t ) 

I ~ (31) 

We will focus on the initial distribution IXo), which assigns probability 1 
to the configuration with a single particle at the origin, and all other sites 
vacant. Then we find the following recursive relation for j g t/): 

1%) = [Xo) (32) 
and 

[ ~r = (2 W +  V) p ~rtj_ 1 ); j~>l  (33) 

As we operate with V once in each step, the "state" ['gtg) is a sum over con- 
figurations containing up to j + 1 particles. The coefficient of t / in the series 
for flU) is simply obtained by summing the products of the coefficient and 
the number of particles in each configuration. The coefficients in the expan- 
sion for P(t) could be obtained simply be summing all the coefficients to 
the configurations in [Us). It is, however, much simpler to calculate the 
extinction probability p(t), the probability of having entered the absorbing 
state; obviously, P(t)= 1-p(t) .  The coefficient of t / in the expansion of 
p(t) is simply the coefficient of the vacuum state ]0) in tgtg), or, as W 
annihilates only one particle in each application, it is 2 times the coefficient 
to the single-particle state in [~ j_ l ) .  Note that as V (W) only creates 
(destroys) single particles, we do not need to keep all configurations in 
[~P/). In a calculation ofp( t )  to order n, we can discard all configurations 
with more than n - j  particles, as these only contribute at orders higher 
than n. 
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Next we consider the long-time behavior in the supercritical region 
and derive a series expansion in powers of 2 for the ultimate survival 
probability Po~. In this expansion we treat the annihilation operator W 
as a perturbation. The unperturbed evolution never reaches the vacuum 
state, so for small 2 we are clearly in the supercritical region. We expect the 
critical point to be associated with the first singularity on the positive 2 
axis. Consider the Laplace transform of ]g~(t)): 

I ~t(s)> = fo~176 e -st I ~t(t)> = ( s - - S )  -1 ] ~tTJ(0)> 

Assuming that I~(s))  can be expanded in powers of 2, 

I q'(s) ) = Iq'0) +;~ Iq ' l )  +,~2 I q q )  + ".. 

we find upon inserting Eqs. (35) and (26) in Eq. (34) that 

I~'o) = ( s - v ) - '  IXo) 

and 

I~-[n)=(s--V) -1 W[~Jn_l); n ~ l  

(34) 

(35) 

(36) 

Inserting Eq. (30) and rearranging yields (for the A model) 

(s__V)-I((~)=Sq[((~).q._(s__V)-I ~ ((~t)] 
i=1 

where Sq=-(S-t-q) -1. The perturbation expansion derived 
generally valid. Only Eq. (39) differs slightly from model to model. 

As V creates configurations having an additional particle, it is' clear 
from Eq. (39) that ( s -  V) -1 operating on any configuration (apart from 
the vacuum) generates an infinite sequence of configurations. Thus it is 
impossible to calculate I~(s))  completely. What we can calculate rather 
easily, however, is the extinction probability/5(s). The extinction probabil- 
ity is readily obtained from Eq. (35), as the 2 j term in the expansion for 
fi(s) is the coefficient of the vacuum state 10) in I ~'s). Noting again that 
W only annihilates a single particle, we observe that configurations with 
more than j particles only contribute to the extinction probability at orders 

(38) 

(39) 

above is 

(S-- V) -1 ( ~ ) = s  l ( (~ ) -~-s - l ( s - -  V) -1 V((~) 

As can be seen from Eqs. (36) and (37), the operator ( s -  V) 1 plays an 
important role in this expansion. The effect of this operator on a configura- 
tion (~) can be found using the identity (valid for any configuration) 

(37) 
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higher than j. Thus, if we want to carry out the expansion to some order 
n, we only have to consider configurations containing up to n particles, and 
as I~o)  is generated from a single particle at the origin, the number of 
such configurations in [~o)  is finite (actually it is a sum over all lattice 
animals consisting of n or fewer sites). Furthermore, when we have Carried 
the expansion to order j we can discard all configurations with more than 
n - j  particles, as these can never reach the vacuum state during the 
remaining n - j  applications of W. Another major simplification arises if 
we only focus on the ultimate survival probability P~  = 1 - l i m s + 0  s/~(s); 
then the algebraic factor Sq in Eq. (39) reduces to the purely numerical 
factor 1/q. 

Finally, we consider the long-time behavior in the subcritical region. 
This expansion is very similar to the supercritlcal case, but now we treat 
V perturbatively instead of W. First we rewrite Eq. (26) as 

s = w +  u v  (40) 

where # = 2 -  ~, and we have absorbed a factor 2 into a rescaling of the time 
variable in Eq. (24). One immediately sees that the unperturbed evolution 
operator e w' simply corresponds to an exponentially decaying chance of 
survival. Thus in the infinite-time limit only the vacuum state remains, 
and we are studying the subcritical regime. Again we take the Laplace 
transform of Eq. (25), and assuming that [~(s))  can be expanded in 
powers of #, 

I q'(s))  = Iq'o) + u  I f ' l )  + u 2  Jq'2) + .-- (41) 

we find in analogy with Eqs. (36) and (37) 

I~'o) = ( s -  w)-'-rXo) (42) 

and 

I ~ n ) = ( s - - W )  -1 F l ~ n _ l )  ; n ~ ]  (43) 

An identity equivalent to Eq. (39) holds for ( s -  W)-t :  

(s-W) l(~;)=sr[(~:)+(s-W)-' ~ (~;)] 
i = t  

(44) 

where sr = (s + r) ~ and r is the number of particles in the configuration ~f. 
As W destroys particles, ( s - W )  -~ operating on any configuration 
produces only a finite number of new configurations. 
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In this case we can derive an expansion for P(0)  directly. The  coef- 
ficient of #J in the expansion for P(0)  is the sum of the coefficients of all 
configurat ions,  except the vacuum,  in I q~j). The  corresponding coefficient 
in the expansion for ~(0) is just  the sum of the p roduc t  of the coefficient 
and the number  of particles for each configuration.  Again the calculat ion 
is greatly simplified by the fact that  sr is replaced simply by 1/r. 

6. A P P L I C A T I O N  TO T H E  O N E - D I M E N S I O N A L  A M O D E L  

As an i l lustration of the methods  derived in Section 5, we compute  the 
poisoning probabi l i ty  p(z)  for the one-dimensional  A model  to (9(23). First 
we need a convenient  no ta t ion  for configurations.  Since we are focusing on 
si tuations where mos t  of the sites are vacant ,  we will denote  an occupied 
site by ~ and a vacant  site by o. Typical ly the set of  occupied sites will be 
embedded  in an otherwise empty  la t t i ce - - so  we assume that  all sites to the 
right (left) of the first (last) ~ are vacant.  We will fu r thermore  use the trans- 
lat ional  invariance of the lattice. Thus  (oo)=52iA~A~+l  10) denotes a 
t ranslat ional ly  invar iant  configurat ion with two adjacent  occupied sites and 
the rest vacant ,  (~176  Z i  A~A~+2 10) has two occupied sites separated by 
a vacancy,  etc. 

I tera t ing Eq. (39), we obta in  

1~r = $2(~ ) -1- 2 S 2 ( . ~  -~- 4 S 3 ( ~  + . . .  

where we have discarded all configurat ions with more  than  3 particles, as 
they do not  contr ibute  to the extinction probabi l i ty  at this order. Using 
Eq. (29), we get 

W [ ~ o )  = s2[(0)  - (1 - 4s2)(~ - 4s2(1 - 2s2)(~ + 4s~(~176 + - . - ]  

where the omi t ted  terms have three or more  particles. Then Eqs. (37) and 
(39) imply 

2 I ~1 ) = s2 Is  1(0) - ( 1 - 4s2 ) s2(o) - 2s~(3 - 8s2)(o �9 ) + 4s 2 s3(~ o �9 ) + .-. ] 

Similarly, 

Wlgq 

I g'2 
W 1~2 

) = -sza[(1 - 4 s 2 ) ( 0 ) -  (1 - 16s2 + 32s 2 + 8s2s3)(e ) -t- " "  "] 

) = --sZ[s--I(1 -- 4S2) (0 ) -  S2(1 -- 16S2 + 32S 2 + 8S2S3)(') + "" "] 

) = S3(1 -- 16S2 + 32S~ + 8SzS3)(0) + "'" 

) =S--lS32(1-- 16Sz+32S~+8S2S3)(0)+  " "  
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Collecting coefficients of (0) yields 

~(s) = s - l [ s 2 2  - (1 -4s2)  s~22 + (1 - 16s2 + 32s~ + 8SzS3) s323 + -. .]  

Note that in the expansion of I~(s) )  it is only (0) which carries the factor 
s -~. All other configurations carry one or more Sq factors, corresponding 
to an eventual exponential decay in the probability. The ultimate survival 
probability is 

1 1,~2 P ~ = l - l i m s ~ ( s ) = l  ~ 2 - ~  - 7 2 3 + . . -  (45) 
s ~ 0  

The coefficients of 2 j in the expansion for /~(s) are already quite com- 
plicated at this low level and will evidently become more so at higher 
orders. For this reason we calculate only the ultimate survival probability. 
[The coefficient of 2 j in P~  is - 1 times the coefficient of (o) in I ~j ~ )-] 
Restricting attention to P~  allows us to anticipate the limit s--* 0, so that 
we can replace Sq by l/q, resulting in a major simplification of algebra. 
This enables us to obtain a much longer series for P~  at the expense of 
information about the behavior at intermediate times. 

Next we take a look at the subcritical expansions for/3(0) and ~(0). 
Using Eq. (44), we find 

l~'o) =sl(.) + s-X(0) 

Notice that this [~o)  is very different from the corresponding quantity in 
the supercritical expansion. From Eq. (30) we get 

V l~o)  = 2s1[(~ - (~ 

Using Eq. (44), we find 

I~1 ) = 2sl s2(~176 + 2s~(2s2 - 1 )[-(o) + s -1(0)] 

As can be seen, the coefficients are already becoming quite complicated. 
But we are interested in the series only at s = 0  and we can therefore 
replace sr by 1/r. We will also discard the vacuum state, as the survival 
probability and average number of particles are obtained from the other 
configurations. We then find 

I~'17 =(.~ 

Continuing in the same manner, we obtain, for s = 0, 

V I ~ t )  = 2(oo~ 2(oo) 

I~ ;7  = ~( . . . )  + � 89  ~(..) 
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v l~=>=@(  . . . .  )-4-�89 . . . .  ) ,4 , (  . . . .  )3 

- ~ ( . . . ) -  ( . o . )  + ~ ( . . )  

I q'3>=�89 . . . .  ) + ~ E (  . . . .  ) + (  . . . .  ) ] + ~ (  . . . .  ) 

- ~ ( . . . ) -  ~( .o .)  + ~( . . )  

Summing the coefficients in I~j) ,  we find 

~(0)  = 1 + ~ + ~ + - ~  + , . .  (46) 

and forming the sum of the product of coefficients and number of particles, 
we find 

~(0) = 1 + 2/~ + 2# 2 + ~#3 + .. .  (47) 

Next we consider the expansion for ~2(0). This expansion is more com- 
plicated, as we must keep track of the origin in each configuration. We now 
mark the origin by an overbar, e.g., (o~o) denotes a configuration in which 
the origin is vacant while its neighbors are occupied. As before, all sites to 
the left and right of the particles are vacant. We use reflection symmetry so 
that (~.) -= �89176 + (.~)], etc. Using the rules for the subcritical expansion, 
we obtain, for s = 0, and neglecting the vacuum state, 

I~'0> =(,) 
V l~0)  = 2(; ,)  - 2(~) 

I~Pl ) = ( " )  + (~') - (~) 

V I~I}  = (~~176 (~  (~ '~176176  

[~'2> = ~ ( " . )  + ~ ( - " )  + ~(~-.) + ~(~o-) 

+ ~(~ + ~(~o.)- ( '-) - 2(~-) -4- 7(~) 

V l~'~) = �89 + ( . - . )  + ~(~.. .)  + ~(,o. .)  + ~(.~o.) 

+ ~(.~. .)  - -~(,..) - ~( . , . )  + -~(~o..) - -~(~..) 

- ~ ( , o . ) -  �89 + ~ ( , . ) -  ~(~o.) + 4 ( ~ . ) -  ~(,) 

I~'~) = ~ ( " . - )  + � 8 8  � 88  ~ ( ~ o . . ) +  ~ ( , . o . )  

+ ~ ( .~ . . )  + ~ ( . , o . ) -  ~ ( , . , ) -  ~ ( . , . )  + ~(~o. . )  

+ ~(~ .o . )  + ~(~oo.) + ~ ( . ~ o . ) -  ~ (~ . . )  - ~(~o.) 

- ~ ( . ~ . )  + ~( , . )  + ~(~oo.) - ~(~o.) + ~ (~ . )  - ~(,) 
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from which we find 

2 2 ( 0 ) = 2 # + 7 #  2+ 12~p 3+ ..- (48) 

Finally we turn our attention to the expansion in powers of t as given in 
Eqs. (31)-(33). For the A model in one dimension, the first few terms are 
as follows: 

s I ~(o)> = 2[ (~ - ( , ) ]  + 2 [ (0 )  - (~  

s 21 g*(o) > = 4 ( . . , )  - 2(4 + 32) ( . . )  + (4 + 82 + 22)(~ - 2(2 + 2)(0) 

s 31 ~ ( 0 ) )  = 8( . . . .  ) - 24(1 + 2(o~176 + 2(12 + 262 + 722)(,~ 

+ 42(,o,)  - (8 + 362 + 2222 + ;? ) ( , )  + 2(4 + 82 + 22)(0) 

which implies for the survival probability 

/ ) 2 ( 2  + 2(4 + 82 2 ~ ) + 
P ( t )  = 1 - 2 t  + "'-------~' t 2 t 3 + C ( t  4) (49) 

2! 3! 

and for the mean particle number 

~i(t) = 1 + (2 - Z) t Z(4 - 2) t2 _ 42 + 622 - 23 t3 + (9(t4) (50) 
2! 3! 

In all cases, calculating successive terms rapidly becomes very complicated. 
The rules are, however, simple enough that they can be codified as a 
computer algorithm. 

7. C O M P U T E R  ALGORITHM 

The series expansions derived in Section 5 are based on the recursive 
determination of I~ j )  as expressed in Eqs. (31)-(33), (35)-(37), and 
(41)-(43). The process consists of many similar elementary steps, creation 
and annihilation of particles, which are readily represented in a computer 
algorithm. 

Each component I ~ j )  in the expansion is a sum over many configura- 
tions. In one dimension, any configuration is conveniently expressed as a 
binary number, with O's representing vacancies and l's representing par- 
ticles. Due to translational invariance we can assume that the first site is 
occupied by a particle, so that a configuration corresponds to an odd 
integer. We will refer to a configuration by its integer analog [(~ (5), 
etc.]. The operators V and W are readily expressed via logical bitwise 
operations on configuration (i). 
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In the following we will use the supercritical expansion to exemplify 
the algorithm. The full program is listed in the Appendix. Let COEP ( i )  be 
the coefficient of configuration (i), IND ( i )  the number of particles in the 
configuration once it has been created [i.e., IND ( i ) =0 if the configuration 
has not yet appeared in the expansion], IS (k) a mask whose bytes are all 
0 except for the kth [i.e., IS (k) = 2k], and finally let NS (k) be the bitwise 
compliment of IS (k) [i.e., NS (k) =NOT ( IS  ( k ) )  ]. As can be seen from 
Eq. (37), the evaluation of ]~ j )  consists of two steps: first, the operation 
of the annihilation operator W on (the previously determined) component 
17~j-1), then operation with ( s - V )  -1. The configurations (i') generated 
by W as it operates on (i) are evaluated [e.g., via the operation i ' - -  
1AND (NS ( k ) ,  i ), where 1AND is the bitwise logical AND]. Now, i ' <  i if 
site k was occupied and thus a new configuration generated. The various 
new configurations are simply produced by letting k run from 0 through 
the maximal possible number of particles in a configuration. COEF ( i ' +1) 
[which temporarily stores the coefficient of (i ')] is augmented by 
COEF(i ) ,  and COEF( i+I )  is decreased by C O E F ( i ) * I N D ( i ) .  After 
having gone through all the configurations one resets the coefficients, i.e., 
one sets COEF ( i ) --COEF ( i + l )  and COEF ( i + l  ) =0 for all odd integers i.  

The operation of ( s -  V) 1 is a little more involved, as can be seen 
from Eq. (39). It is, however, easily expressed as an algorithm. The three 
models studied in this paper differ only in the rules for creating particles. 
In the one-dimensional case studied here this difference can be represented 
through a parameter c~ which controls the rate of creation at a site with just 
one occupied neighbor (the rate of creation is 1 when both neighbors are 
occupied); in this way e = 1 corresponds to the A model, c~ = 1/2 to the CP, 
and e = 1/4 to the N3 model. Notice that the configurations in 1~0) are 
the same, but the coefficients are generalized to 1/(2c~). The recursive nature 
of ( z -  V)-~ is realized by treating the configurations in ascending order. 
This ensures that ( z -  V) ~ is applied to the configurations created by V 
because the new configuration i ' >  i. A new configuration i' is produced 
from i by adding a particle at an empty site [i.e., if 1AND(i, I S ( k )  )=0]  
with at least one occupied neighbor [i.e., if 1AND(i, I S ( k - l ) ) > 0  or 
1AND(i, 1 S ( k + l )  )> 0]. If both neighbors are occupied, the new 
configuration (i'), where i ' = I O R ( i ,  I S ( k ) ) ,  is given weight 1, and if 
only one neighbor is occupied (i') it is given weight e. The newly created 
configurations and their weights are stored temporarily. After having gone 
through all the positions in configuration (i), the weights are added up in 
SUM and the coefficient of (i) is changed to COEF (i)/SUM. Finally, the 
coefficients of the new configurations (i') are incremented by COEF ( i ) *  
WEIGHT ( i ' ) [with COEF ( i )  being the newly changed value]. 

As noted in Section 5, there are restrictions on the number of particles 
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in  c o n f i g u r a t i o n s  w h i c h  n e e d  to  be  r e t a i n e d  a t  e a c h  s t ep  o f  t he  c a l c u l a t i o n .  

T h e s e  r e s t r i c t i o n s  e n a b l e  us  to  d e r i v e  t he  v a r i o u s  ser ies  w i t h  l i t t le  

e x p e n d i t u r e  o f  c o m p u t e r  t i m e  ( t yp i ca l l y  1 5 - 2 0  m i n  o n  a n  I B M  3090) .  

8. R E S U L T S  A N D  A N A L Y S I S  

8.1 .  S u p e r c r i t i c a l  E x p a n s i o n  

W e  h a v e  d e r i v e d  ser ies  for  t h e  u l t i m a t e  s u r v i v a l  p r o b a b i l i t y  for  t he  A 

m o d e l ,  t he  c o n t a c t  p roces s ,  a n d  t he  N 3  m o d e l  to  ~()~24). T h e  coef f ic ien ts  

a re  g i v e n  in  T a b l e  I. W e  t h e n  f o r m e d  v a r i o u s  P a d 6  a p p r o x i m a n t s  to  t he  

ser ies  for  (d/d2)in P ~ ,  t h u s  o b t a i n i n g  u n b i a s e d  e s t i m a t e s  for  2c, t he  f irst  

Table i. Coefficients of h" in the Supercritical Expansion for 
the Ultimate Survival Probability P~ 

n A model Contact process N3 model 

0 1 1 1 
1 - �89 - 1  - 2  
2 - �88 - 1  - 4  

3 -2~ --2 -13�89 
4 I63 -4�89 --50~481 

432 
5 3841 - -  11 -23319@5 

7776 

6 -0.6546460619570188 1249 - 2 8 y ~  -1.136548638317330 x 103 

7 -0.9160621981452912 -771@ 8 -5.695698596607674 x 103 
8 -1.356981446217977 -2.137216796874996 x 102 --2.977016730062130 x 104 
9 -2.052404865011525 -6.049109971788211 x 10 z --1.571425361355731 x 105 

10 -3.088808063863888 -1.739640020676603 x 103 --8.498400295925013 • 105 
11 -4.711980262430326 -5.074116017903053 x 103 --4.634960582084085 • 10 6 

12 -7.373187827483772 -1.494581753539295 • 104 -2.560631593768748 • 10 7 

13 -11.64098743777937 -4.447736306471725 • 10 4 -1.426950583017804 x 108 
14 -18.31374655286935 -1.332435717211703 x 105 -8.004785860447677 x 108 
15 -29.09696095266492 -4.022276206150533 x 10 s -4.528272714746211 x 109 
16 -46.84094923091073 --1.220343327302971 x 106 -2.570217654083986 x 10 l~ 
17 -75.46270213626647 --3.723196360389418 x 106 -1.469947275905127 x 1011 
18 -1.216314724443718 x 102 -1.140871210580868 • 10 7 -8.422148793647517 x 1011 
19 -1.978953411341986 • 102 -3.509071017053852 x 10 7 -4.856567304563910 x 1012 
20 -3.230966492170077x 102 -1.083954944690878 x 108 -2.804254339803976 • 1013 

21 -5.277431752339135 x 102 -3.355197890181546 x 108 -1.627400816255525 • 1014 

22 --8.644497240830738 x 102 --1.043396858362474x 109 --9.458146911335279 • 1014 

23 -1.427559659906972 x 108 -3.246061423205646 • 109 -5.516901623641276 x 1018 
24 -2.342271155757435 • 10 3 --1.015175910777746 x 101~ --3.224002599773613 • 1016 
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pole on the positive 2 axis, and fi, the residue of the Pad6 approximant at 
this pole. Figure 1 shows the flow of (2 c -  2) times the value of the Pad6 
approximants to the series for (d/d2)In P~ evaluated at 2, in the vicinity 
of 2c for various Pad6 approximants. This analysis yields the residue and 
thus the exponent ft. The results of the analysis are summarized in Table II. 
The estimates of 2c are very stable, as they only differ in the sixth digit. The 
estimates for fl were obtained as the "central" value of the flows shown in 
Fig. 1. As can be seen, the estimates for fl are in good internal agreement, 
with the discrepancy between the models being somewhat more pronounced. 
The error in the values for fi can be estimated from the spread of various 

Fig. 1. 

902775 / 

0.2765 ~ S 

0.2760 
0.5740 05741 0.5}42 

0.2180 

0.2775 

0.2770 

0.2165 

0.2160 
0.3030 

0.2773 
g 
0.2772 

a o 

k_ 
1 

0.3031 0.3032 0.3'033 

0.2711 

0.5743 

0.3034 

r , . , , 

0.2770 - 

0.2759 
0.1619 0.1620 0.1621 0.1622 k 

Flow of the residue fl from various Pade approximants  to the series (d/d;t) In P ~  for 
the A model  (top),  the contact process (middle),  and the N3 model  (bottom).  
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Table II. Unbiased Estimates for the Location of the Critical Point )~c and the 
Value of the Critical Exponent [3 As Obtained from Various Pad~ Approximants 

to the Series d/dk In P~ ,  wi th  the Series for P~ Given in Table I 

M o d e l  Approximant 2c fl 

A [10, 1!] 0.574143 0.27676 
[11, 10] 0.574141 0.27674 
[11, 11] 0.574142 0.27674 
[11, 12] 0.574139 0.27672 
[12, 11] 0.574142 0.27675 

CP [10, 11] 0.303228 0.27688 
[11, 10] 0.303228 0.2769 
[11, 11] 0.303230 0.27693 
[10, 12] 0.303228 0.27686 
[12, 10] 0.303229 0.27690 

N3 [10, 11] 0.162057 0.27710 
[11, 10] 0.162056 0.27702 
[11, 11] 0.162058 0.27715 
[11, 12] 0.162058 0.27712 
[12, 11] 0.162057 0.27707 

Pad6 approximants.  This leads to the following estimates for 2c and/ / :  For  
the A model we estimate that '~c = 0.574141(3) and fl = 0.27674(4), for the 
CP we estimate that 2c=  0.303228(2) and fi = 0.27690(5), and for the N3 
model we estimate that 2c=0.162057(2) and //=0.27710(5). We strongly 
believe that the models belong to the same universality class and thus 
should have the same critical exponents. However, the values o f / / d o  not 
agree within the cited uncertainty. Rather than seeing this as a violation 
of universality, we believe it reflects systematic errors that cannot be 
estimated from any of the individual models. These errors could be caused 
by corrections to scaling or be inherent to the method. This suggests the 
need for better methods for analyzing the series, a problem we hope to 
address in the future. 

As pointed out by Gut tmann,  (33) it is difficult to quantify error bounds 
and when they are stated they are generally subjective confidence limits, 
frequently measuring the enthusiasm of the author rather than the quality 
of the data. Our work suggests that one way to obtain a more realistic 
estimate of the exponent uncertainties is to study several closely related 
models. In conclusion we adopt  / /=0.2769(2) as our final estimate. This 
value is in good agreement with the earlier results fl = 0.277(1)(2~ obtained 
from time-independent expansions for the same models as studied in this 
work. Our  estimate for /3 agrees only marginally with series expansion 
results for directed percolation, (26) which yielded //=0.2764(1). However, 
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our result does not agree with the conjecture (~4) that /~= 199/720= 
0.2763888 . . . .  This conjecture is also contradicted by recent results 
obtained by ben-Avraham et  al. ~35) 

Better estimates for critical exponents can often be obtained if one has 
prior knowledge of the location of the critical point. In this case it is useful 
to study Pad6 approximants to the series for (2c-2) (d /d2)In  P ~  which, 
when evaluated at 2c, yields the critical exponent/~. Since we do not know 
2c, we use a generalization of this approach. (36) We form the series men- 
tioned above using a trial value ~c for 2c and find the corresponding/~. For 
each Pad6 approximant we obtain ~ as a function of ~c. In a plot of 

0.2769 

0.2768. 

0.2767 

0.2765 

0.57413 0.57414 0.57415 

0.2771. 

0.2770 

0.2169 

0.2758 

0.2767 , , , 
0.30322 0.,10..123 0.30324 

0.2780 

0.2775 �9 

0.2770 

0.2765 - 

0.16205 0.16206 "~c 0.16207 

Fig. 2. Biased estimates/~ as a function of 2c derived from Pad~ approximants to the series 
(~c- 2)(d/d2) In P ~  evaluated at ~. for the A model (top), the contact process (middle), and 
the N3 model (bottom). 
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versus ~c we expect the curves to intersect at the point (2c, fi). Figure 2 
shows the result of this approach for the three models studied in this paper. 
Notice that with the unbiased flow shown in Fig. 1 we first form Pad6 
approximants to (d/d2)In P ~ ,  evaluate them at 2, and then multiply by 
(2 c - 2 ) ,  whereas with the biased flow shown in Fig. 2 we first form the 
series ('2~-2)(d/d2)lnP~, then form Pad6 approximants and evaluate 
them at ~.~. In all cases we see a very narrow intersection of the Pad6 
approximants, showing the utility of this approach. The estimates of ,~c and 
fl from this analysis are consistent with those obtained from the unbiased 
estimates. The method therefore seems to be very efficient in determining 2 c 
and the central value of the critical exponent. As in the unbiased case, the 
estimates from the various models disagree in the fourth significant figure. 

Table III. Coeff icients of I Jn in the Subcrit ical  Expansion 
for the Survival Probabil i ty P(O) 

n A model Contact process N3 model 

0 1 1 1 

1 1 �89 �88 
2 ~ ~ l 
3 ~ ~ 7 5--~ 

4 ~ I_L 2&o 720 

5 0.1490123456790121 1.1705246913580190 x 10 .2  1.4754533179012440 x 10 -3 

6 0.1646778365667236 1.9142416225749440 x 10 3 -6 .7660136730232340  x 10 _4 

7 - 2 . 8 8 1 1 6 6 2 6 0 7 4 3 0 6 2 0  x 10 z 4 . 4 9 0 7 8 3 2 5 7 7 4 7 5 0 0 0 x  10 . 3  4 . 4 9 7 2 5 4 6 3 7 0 9 9 8 5 7 0  x 10 4 

8 0 . 2 1 2 1 6 6 3 7 0 7 0 5 6 3 6 5  - 3 . 1 9 4 1 1 9 3 1 3 0 6 9 0 7 4 0  x 10 3 - 2 . 6 4 1 8 4 9 2 0 2 8 9 0 6 7 1 0  x 10 . 4  

9 - 0 . 2 8 2 0 4 0 7 8 4 2 9 1 4 7 4 8  3 . 2 2 2 9 2 5 2 7 7 2 2 8 1 5 4 0  x 10 . 3  1 . 5 8 5 4 7 9 0 7 8 9 0 3 4 0 8 0  x 10 -4  

10 0 . 5 6 8 7 1 6 2 2 3 5 1 5 1 3 6 2  - 2 . 8 7 5 0 6 6 5 2 3 4 4 5 2 7 9 0  x 10 -3  9 . 3 1 8 8 7 7 9 4 4 6 9 6 2 2 0 0  x 10 -5  

11 - - 0 . 9 9 7 4 3 9 1 8 4 1 1 7 5 3 9 9  2 . 6 7 8 8 5 4 2 0 0 8 8 8 2 7 2 0  x 10 . 3  5 . 4 2 8 8 0 2 6 0 9 6 3 6 1 3 8 0  x 10 5 

12 1 . 8 4 1 8 7 4 5 1 0 2 5 7 3 0 9  - 2 . 4 6 0 0 5 1 9 7 7 1 1 5 9 4 2 0  x 10 . 3  3 . 1 2 7 7 1 5 5 0 5 6 9 8 3 0 6 0  x 10 5 

13 - 3 . 3 6 0 7 6 7 3 2 4 8 3 9 3 7 2  2 . 2 7 1 5 5 8 5 6 2 3 2 4 1 6 1 0  x 10 3 1 . 7 8 7 6 7 2 2 4 7 3 6 8 4 2 5 0  x 10 ~ 

14 6 . 1 8 2 3 0 6 4 7 8 2 2 8 2 2 2  - 2 . 0 9 6 2 1 9 1 1 2 2 7 6 0 9 4 0  x 10 . 3  - 1 . 0 1 6 2 1 7 6 3 8 9 6 2 1 4 5 0  x 10 5 

15 - 1 1 . 3 8 7 6 3 5 5 2 1 4 2 2 6 9  1 . 9 3 9 2 1 4 3 1 4 2 6 1 8 0 8 0  x 10 3 5 . 7 6 3 9 3 3 4 9 3 3 7 4 4 5 0 0 x  10 . 6  

16 2 1 . 0 4 8 6 6 0 1 7 4 7 8 8 2 4  - 1 . 7 9 8 2 8 2 4 7 6 8 9 1 8 7 8 0  x 10 . 3  - 3 . 2 7 1 6 8 2 8 6 7 5 6 5 9 2 7 0  x 10 . 6  

17 - 3 9 . 0 1 5 4 6 7 6 2 3 4 7 3 9 0  1 . 6 7 2 8 4 9 7 5 2 3 6 7 7 2 0 0  x 10 . 3  1 . 8 6 2 9 1 1 0 3 2 2 1 9 7 1 0 0 x  10 . 6  

18 7 2 . 5 3 8 7 9 0 0 2 3 4 3 0 6 5  - 1 . 5 6 1 2 5 8 6 7 1 6 7 2 0 5 3 0  x 10 3 - 1 . 0 6 5 7 0 3 7 1 9 7 0 9 2 7 2 0  x I0  6 

19 - 1 . 3 5 2 6 1 9 0 5 6 5 3 1 2 1 0  x 102 1 . 4 6 1 8 6 4 9 1 8 2 2 6 0 9 2 0  x 10 3 6 . 1 2 8 0 4 0 1 1 6 0 8 1 4 6 2 0  x 10 . 7  

20  2 . 5 2 9 4 1 9 0 9 6 3 5 8 4 6 5  x 102 1 . 3 7 2 9 5 2 2 7 6 3 8 1 7 9 3 0  x I0  3 - 3 . 5 4 0 5 6 6 0 1 2 4 6 2 1 1 1 0  x 10 . 7  

21 - 4 . 7 4 2 8 9 9 2 9 2 5 5 4 5 6 6  x 102 1 . 2 9 2 9 6 7 5 1 7 2 6 9 6 7 0 0 x  10 -3  2 . 0 5 3 2 3 6 7 5 6 4 8 0 3 3 3 0  x 10 -7  

22  8 . 9 1 6 1 1 2 1 8 9 1 7 2 4 6 0  x 102 1 . 2 2 0 5 7 4 6 1 8 4 4 1 6 0 9 0  x 10 ~ - 1 . 1 9 3 5 2 9 7 0 7 2 3 1 5 8 2 0  x 10 -7  

23 1 . 6 8 0 1 2 1 7 1 6 9 9 9 7 3 5  x 103 1 . 1 5 4 6 8 4 1 9 2 7 4 7 4 3 7 0  x 10 3 6 . 9 4 4 7 1 8 0 0 4 0 5 1 3 2 2 9  x 10 . 8  

24  3 . 1 7 2 9 7 1 2 1 7 3 6 7 9 4 7  x 103 - 1 . 0 9 4 4 2 9 5 1 6 7 4 5 4 2 1 0  x 10 . 3  - 4 . 0 3 9 9 3 9 2 5 9 9 2 4 2 1 6 0  x 10 ~ 
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8.2. Subcritical Expansions 

In the subcritical regime we have derived series for the ultimate sur- 
vival probability and the average number of particles to 24th order in 
# = 2  -1. For the quantity )~2 we have derived a series to 18th order. The 
coefficients in these series are listed in Tables III-V. One immediately 
notices that the series are not so well behaved. The alternating sign of con- 
secutive terms is an indication that the dominant singularity is located on 
the negative p axis. We analyzed the series using the same methods as for 
the supercritical series. The results of the unbiased analysis for the survival 
probability are summarized in Table VI and for the number of particles in 
Table VII. The critical singularity is not as stable as in the supercritical 
case and the value of #c differs quite a bit from 2; -t. The lack of stability 
of /~c of course leads to a less accurate determination of the critical 

Table IV. Coefficients of p" in the Subcritical Expansion for 
the Average Number of Particles h(0) 

n A model Contact process N3 model 

o 1 1 1 

1 2 1 
2 2 �89 �88 

3 1~ �88 
4 1�89 ~2 384  

7 

6 ~ 1-- 55-~96 288  

7 0.2493827160493821 1.4660493827160410 x 10 -2  1.1886031539351770 x 10 -3 

8 0.6884773662551446 -7 .2402263374484451  x 10 3 -6 .7031671971449939  x 10 -4  

9 -0 .5108470507544979  9.0599815672151569 x 10 3 4.0924264831960010 x 10 4 

10 1.449847050754300 --7 .6807060363794850 x 10 -3 -2 .3972546903848020  x 10 -4 

11 - -2 .359832016297594 7.4357531647106270 x 10 -3 1.4002098834551620 x 10 -~ 

12 4.577409663674890 -6 .8295967100518310  x 10 -3 -8 .0701830317584079  x 10 -5 

13 -8 .342415514885291  6.3779501429536061 x 10 -3 4.6170685752736690 x 10 -5 

14 15.54134106412082 -5 .9146293588482440  x 10 -3 -2 .6265373384772920  x 10 -5 

15 -28 .78362454239583  5.5016525380336909 • 10 3 1.4908816489589680 • }0 5 

16 53.54002284758874 -5 .1218195645679460  • 1 0  3 -8 .4677533119365099  • 10 -6  

17 -99 .73136975399839  4.7809842965747750 • 10 -3 4.8237629118719750 • 10 -6  

18 1.862806886599634 • 102 -4 .4747077329947890  • 10  - 3  -2 .7600574945468440  • t 0  - 6  

19 --3.487878336242023 • 102 4.2001643605226410 • 10 3 1.5869689698041270 • 10 -6  

20 6.547130632379355 • 102 -3 .9531987663530880  • 10 -3 --9.1657233120783739 • 1 0  - 7  

21 -1 .23190408305394  • 103 3.7300645132853410 • 10 -3 5 . 3 1 2 3 4 0 7 5 6 8 5 8 9 1 0 0 •  10  - 7  

22 2.323193188630013 • 103 --3 .5273608481607640 • 10 -3 -3 .0858483756500820  • 10  - 7  

23 --4.390456106249723 x 103 3.3422832038918550 • 10 -3 1.7942087455647910 • 10 -7 

2 4  8.313559411785390 • 103 --3 .1725654739756720 • 10  - 3  -1 .0430187154798440  • 10 -7 



Time-Dependent Perturbation Theory for Nonequilibrium Lattice Models 

Table V. Coefficients of Ia n in the Subcritical Expansion for 
the Spreading of Particles ,~2(0) 

111 

n A model Contact process N3 model 

o 1 1 1 

1 2 1 
2 7 1~ 7 

3 12~ 1~ 0.1901041666666664 

4 17�89 1 ~  6.3856336805555660 x I 0 2  

5 19~ 288197 1.8213568793402790 x 1 0 2  

6 191~ 6~ 3.2796026159218070 x 10 -3 

7 18.48827160493976 0.1847029320987510 1.8780726080147860 x 1 0 3  

8 16.59480452675448 7.5126189557623050 x 10-2 -5.7276977523249870 x 10-4 

9 13.02176611795439 4.6265994727462590 x 10 -2 6.2998195943861600 x 10 -4 

10 12.63513940315905 4.3215107092355370 x 10 -3 --4.2079635990711300 x 10 -4 

11 5.016808260411231 1.9412633075471370 x 10 -2 3.0050740557312060 x 1 0 4  

12 14.7131239188803 - 1.1829981046481720 x 10 -2 --2.0231631304122020 x 10 -4 

13 -- 12.78410961292725 1.6803662542129920 x 10 -2 1.3399796119614990 x 10 -4 

14 41.64442947988799 - 1.6553333878337960 x 10 -2 - 8.6835578895642670 x 10 -5 

15 -77.92125019899402 1.8117922209656310 x 10 -z 5.5388981758386310 x 10 -5 

16 170.4662114678585 - 1.8769963628250040 x 10 -2 - 3.4837951093368030 x 10 -5 

17 -348.5483087264899 1.9567813401686720 x 10 -z 2.1651650208454030 x 10 -5 

18 721.4541831732130 2.0133059273039680 x 10 -2 - 1.3314308116140040 x 10 -5 

Table VI. Unbiased Estimates for the Location of the Critical Point Pc and 
the Value of the Critical Exponent v -  ~ As Obtained from 

Various Pad~ Approximants to the Series d/dlJ In P(0) ,  
wi th  the Series for P(0)  Given in Table III 

Model  A p p r o x i m a n t  #c v - f l  

A [10, 1 l ]  1.74141 1.4520 

[11, 10] 1.74182 1.4565 

[11, 11] 1.74131 1.4510 

[11, 12] 1.74140 1.4520 

[12, 11] 1.74161 1.4545 

C P  [10, 10] 3.29785 1.4575 

[11, 10] 3.29790 1.4578 

[ 1 0 , 1 1 ]  3.29804 1.4589 

[11, 11] 3.29791 1.4579 

[ I1 ,  12] 3.29793 1.4580 

N3 [10, 11] 6.17328 1.4682 

[11, 10] 6.17304 1.4678 

[11, 11] 6.17263 1.4666 

[11, 12] 6.17224 1.4650 

[12, 11] 6.17205 1.4646 

822/71/1-2-8 
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exponents. The discrepancy between the three models is also more 
pronounced. We tried to transform the series in order to remove any 
singularity closer to the origin than #c, but none of these transformations 
led to improved estimates for the critical exponents. The series for the 
spreading is so ill-behaved that this kind of analysis does not yield any 
useful results. 

An analysis of the biased exponents, similar to the one presented in 
Fig. 2 for the supercritical series, was done for the subcritieal series. The 
analysis of the series for the survival probability yielded #c = 1.74135 and 
v - fl = 1.4515 for the A model, #c = 3.29791 and v - fl = 1.4579 for the CP, 
and #c = 6.1727 and v - fl = 1.467 for the N3 model. From the series for the 
average number of particles we find #c = 1.74195 and v(1 + ~/) = 2.2821 for 
the A model, /~c=3.29782 and v ( l + q ) = 2 . 2 7 7 2  for the CP, and 
/~c= 6.17155 and v(1 + t / ) =  2.2824 for the N3 model. Again this kind of 
analysis does not yield any useful results from the series for the spreading. 

Because the supercritical series are so well-behaved and the estimates 
for 2c so stable, we are inclined to believe strongly in these estimates. Using 
these values for 2c we can obtain biased estimates for the critical exponents 
from the subcritical series. The results of this analysis are given in 
Table VIII. The internal agreement of various approximants within each 
model is quite good, and furthermore the agreement between the models is 
improved significantly. In conclusion, we estimate that v-fl= 1.457(2), 

Table VII. Unbiased Estimates for the Location of the Critical Point IJc 
and the Value of the Critical Exponent v(1 + rl) As Obtained from 

Various Pad~ Approximants to the Series d/dp In ~(0) Given in Table IV 

Model Approximant #c v(1 + q) 

A [10, 10] 1.74186 2.2805 
[10,11] 1.74196 2.2820 
[11, 10] 1.74190 2.2815 
[11, 11] 1.74195 2.2825 
[12, 11] 1.74192 2.2820 

CP [10,10] 3.29782 2.2775 
[11, 10] 3.29793 2.2786 
[10, 11] 3.29801 2.2800 
[11, 11] 3.29780 2.2775 
[12, 11] 3.29804 2.2800 

N3 [10, 11] 6.17223 2.2850 
[11, 11] 6.17135 2.2818 
[12, 10] 6.17161 2.2829 
[11, 12] 6.17165 2.2830 
[12, 11] 6.17188 2.2839 
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Table VIII. Biased Estimates of the Critical Exponents v -  13, v(1 + q), 
and v(1 + rl + z )  As Obtained from Various Pad~ Approximants, 

with the Original Series Given in Tables II I-V 

Exponent Approximant A model CP N3model 

v - ~ [10,111 1.4558 1.4576 1.4627 
[11,101 1.4558 1.4576 1.4619 
[11, 11] 1.4547 1.4575 1.4600 
[11, 12] 1.4560 1.4576 1.4586 
[12, 11] 1.4560 1.4576 1.4581 

v(1 + 7) [10, 11] 2.2784 2.2777 2.2799 
[11,10] 2.2778 2.2777 2.2796 
[11, 11] 2.2723 2.2777 2.2792 
[11, 12] 2.2778 2.2777 2.2818 
[12, 11] 2.2773 2.2777 2.2800 

v(1 + q +z)  [7,8] 4.4723 4.4678 
[8, 7] 4.4782 4.8555 
[8,8] 4.4699 4.4723 
[8,9] 4.4723 4.4704 
[9, 81 4.4802 4.4690 

v(1 +q)=2 .278(2 ) ,  and v ( l + t / + z ) = 4 . 4 7 ( 1 ) .  This in turn leads to the 
estimates v = 1.734(2), q = 0.314(3), and z = 1.264(10). If we use the scaling 
relation (3) c5 = fl/v, we find that 6 = 0.1597(3). We can use the hyperscaling 
relation d z = 4 6  + 2q, (3~ where d is the spatial dimension of the system, to 
check the consistency of our estimates. In this manner we find z = 1.266(7), 
in excellent agreement with the other estimate. Our estimates are in good 
agreement with earlier results, which yielded v=1.736(1),  t/=0.317(2), 
6 =0.160(3), and z = 1.272(7) from high-temperature series expansions for 
Reggeon field theory, (is) and v = 1.691(18), t /=  0.308(9), ~5 =0.162(4), and 
z = 1.263(8), from computer  simulations of the contact process and related 
models. (3) 

8.3. Crit ical T ime Series 

As noted in Section 6, one may derive quite long series for the survival 
probability and the mean particle number  in powers of t for any given 
value of 2. We focus on the case 2 = 2 C, and consider how the exponents 
6 and ~/ may be determined from the series. The method of analysis 
parallels the approach applied in ref. 37 to another, albeit simpler, non- 
equilibrium process, random sequential adsorption (RSA). 

From Eqs. (2) and (3) it follows that the asymptotic evolution of the 
survival probabili ty and the mean particle number  in the critical process 
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are governed by power laws: P(t; 2c) oc t -6, li(t; ,~c) oct  n. We also expect 
that the approach to the power law involves corrections to scaling, for 
example, 

P(t;2c),~At 6(1 +at-S+ ...) (51) 

Similar corrections are expected for a(t). 
Relating the long-time behavior to the expansion P(t; 2)=  1 - 2 t +  

O ( / 2 )  -t- " .  about t = 0 evidently hinges upon our ability to find an analytic 
continuation connecting the two representations. It is not obvious that 
such a connection can always be found. Nevertheless, our experience with 
RSA--in which the analysis of short-time series produced high-precision 
results for the asymptotic coverage--suggests that useful estimates may be 
derived via suitable transformation and analysis of the t series. In fact, since 
P(t) and tT(t) and all of their derivatives are well-defined for 0 ~< t < 0% 
we expect that the analytic continuation exists in principle. We seek to 
construct an approximate continuation using Pad6 approximants. (38'39) 

Using the 2c values found in our analysis of the supercritical series, we 
have determined the series coefficients for P(t) in the critical A model and 
contact process to 36th order, as listed in Table IX. A simple ratio analysis 
suggests that each series has a singularity on the negative t axis, not far 
from the origin, so that the direct expansion for P(t) is useful only for 
rather short times. There is, of course, no point in extrapolating the limit- 
ing value of the survival probability: we already know it is zero! Similarly, 
the mean particle number diverges as t--* oe. We want to analyze series for 
quantities which remain finite as t --. o0, and which provide information on 
the exponents. We have found two transformations to be particularly 
useful. If f (t) is the Taylor series expansion of some quantity about t = 0, 
we define 

dln f 
F [ f ( t ) ]  = t a t  (52) 

and 

=t-~  I'dt' f(t') (53) G[f(t)] f( ) 

I f f ~ A t  ~ as t ~  ~ ,  then F(t) ~ ~, while G(t)~ 1/(1 +~). Given f( t ) ,  it is 
straightforward to construct the series for F and G. Other transformations 
--involving repeated integrations and/or differentiations--may also be 
considered, but we have not found these to have such consistent and 
regular behaviors as F and G. 
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The series for the F and G transforms of P(t) and fi(t) again appear 
to have small radii of convergence, but they presumably represent short- 
time expansions of functions which are well-behaved for large t. To get at 
the long-time behavior, we study a set of Pad6 approximants to these 
series. The direct t series may be studied via the diagonal approximants 

Table IX. Series Coefficients for the Survival Probability P(t) 
in the Critical Contact Process and A Model 

n Contact process A model 

0 1.0000000000000000 

1 --0.3032300000000000 

2 0.1975892164500000 

3 -0 .1164842091513778  

4 6.024654861682094 • 10 2 

5 -2 .779249233086488  x 10 -2 

6 1.168865994190696 • 10 -2 

7 --4.574374709742027 • 10 3 

8 1.694874218920966 x 10 -3 

9 -6 ,025873287567562  • 10 -4  

10 2.075363632335699 • 10 -4 

11 --6.965423416871635 • 10 -5 

12 2.285760830438168 • 10 5 

13 - 7 . 3 4 6 9 7 6 1 8 4 8 1 4 0 0 0 •  10 -6  

14 2.315450103127075 x 10 -6 

15 - -7 .161310037527354•  10 7 

16 2.175675321691604 • 10 -7 

17 -6 .499886371038794  • 10 -8 

18 1.911701592344971 x 10 8 

19 -5 .541437872176813  x 10 -9 

20 1.584760002804068 • 10 -9  

21 -4 .475525491599831  • 10 10 

22 1.249141390379286 x 10 -1~ 

23 --3.447980725341066 • 10 -11 

24 9.418066427427577 • 10 12 

25 -2 .546998834664866  • 10 -12 

26 6.822889473992474 • 10 -13 

27 -1 .811193874824606  • 10 i3 

28 4.766380424997410 x 10 14 

29 -1 .243935212649037  • 10 -14 

30 3.220620472366028 • 10 15 

31 -8 .274686654070306  • 10 -16 

32 2.110386135986964 • 10 -16 

33 -5 .344290054620019  • 10 -17 

34 1.344147938547451 • 10 -17 

35 -3 .358434167661840  • 10 -18 

36 8.337893152824442 • 10 19 

1.0000000000000000 

-0 .5741400000000000  

0.7389583698000000 

--0.8538185924123239 

0.8638487931050367 

-0 .7785827928143218  

0.6370211549405265 

--0.4809066254768587 

0.3396289268635887 

--0.2270143835398018 

0.1450385613988649 

-8 ,929646194425331  x 10 2 

5.332554361962063 • 10 - z  

-3 .104181153778206  x 10 - z  

1.767810218091046 x 10 -2 

-9 .873736609925353  • 10 -3 

5,417585323454907 x 10 -3 

-2 ,923421768006476  • 10 -3 

1,552688940178137 x 10 -3 

-8 ,122035956199857  x 10 -4 

4.186890414227672 • 10 -4  

--2.128256818481803 x 10 -4 

1.067406150794438 x 10 -4  

-5 ,285457067901271  x 10 -5 

2.585577039924513 x 10 -5 

-1 .250327599748272  • 10 -5 

5.980527257014955 • 10 -6 

-2 .831044450280031  x 10 -6 

1.326995581307090 • 10 -6  

-6 .161872316136795  x 10 -7 

2.835713668488498 • 10 -7 

-1 .293859062901805  • 10 -7 

5.855164708526439 • i 0  8 

-2 .628800439707885  x 10 8 

1.171303502200469 • 10 -8 

-5 .180736640124616  • 10 -9 

2.275266648642259 • 10 -9 
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(the off-diagonal approximants have trivial t ~ oo limits.) Alternatively, we 
may perform a transformation of variable which maps t = m to a point in 
the finite plane; then the off-diagonal approximants also yield useful results. 
A transformation of variable can also yield a radical simplification of the 
series, when a large set of terms in the original series is subsumed into one 
power of the new variable. Such a simplification appears to facilitate the 
estimation of asymptotic properties. (This is precisely the situation in RSA: 
the exact solutions in one dimension {4~ and on Bethe lattices (41) are well- 
behaved functions whose complicated structure leads to rather unpleasant 
power series in t. The series can be tamed by a change of variable. (37'42) 

There are of course many transformations that one might consider. 
The choice may to some extent be guided by our expectations regarding 
the asymptotic approach of the function to its limiting value. Given the 
correction to scaling behavior described by Eq. (51), one would expect the 
asymptotic correction term to decay as some negative power of t, perhaps 
proportional to t -1, which would suggest that we perform an Euler 
transformation: 

t 
y = (54) 

a + t  

We shall also consider the exponential transformation 

1 - -  C b t  

z = - -  ( 5 5 )  
b 

which proved very useful in the analysis of lattice RSA series. In either case 
the transformation involves a parameter which cannot be fixed a priori. 
We shall adopt the strategy of Adler e taL  (36) compute many Pad6 
approximants for the quantity of interest, as a function of the transforma- 
tion parameter. Then find the parameter values (if any) for which all or 
most of the approximants agree; if such a "crossing" exists, it is natural to 
adopt the associated exponent value as our estimate. The rationale is that 
for a suitable parameter value, the transformed series represents a function 
with a simple structure (having an isolated, simple pole, for example), 
which is well-represented by Pad6 approximants of various orders. 

Consider first the survival probability series for the A model. The 
diagonal Pad6 approximants to the F transform give rather scattered 
estimates for the exponent 6: 0.165, 0.168, 0.153, and 0.178 for the [18, 18], 
[17, 17], [16, 16], and [15, 15] approximants, respectively. However, 
when we make a change of variable using the Euler transformation, we 
obtain more useful results. In Fig. 3 we plot the 6 estimates which result 
from 25 Pad6 approximants (the diagonal series, [m, m], 14 ~ m ~< 18, and 
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Fig. 3. Pad6 approximant  estimates for the exponent  ~ derived from the Euler- transformed 
series for F[P(t)] (F- t ransform of the survival probabil i ty series), for the A model. Twenty- 
five approximants  are plotted as a function of a, the Euler t ransformat ion parameter.  

the corresponding off-diagonals, [n, m], with m - n = - 2 ,  - 1 ,  1, or 2). 
There are very narrow crossings near a=0.46  and 0.48, yielding the 
estimate 6 = 0.160(2). (The uncertainty reflects the variation in 6 over the 
range 0.4 ~< b ~< 0.7, where the estimates are generally well-behaved.) The 
G(t) series for the A-model survival probability yields slightly smaller, but 
consistent estimates. We note that diagonal approximants to the G series 
are quite stable, with the n = 12-18 approximants all giving ~ = 0.158, while 
the [11, 11] and [10, 10] approximants give 0.159 and 0.157, respectively. 
The 6 estimates obtained via Euler transformation of the G series exhibit 
a narrow crossing near a = 1.1, 6 = 0.158 (with a width of about 0.0002). 
The estimates derived via the Euler transformation of the G series become 
constant (approximately 0.158) for a/> 1.25. If we average over all estimates 
for 0.01~<a~<1.25, restricting the sample to 6 values in the range 
[0.15, 0.17] (to exclude a few singularities of the approximants), we con- 
sistently obtain 6 =0.157. From the entire set of estimates reported, we 
conclude that, for the A model, 6 lies in the range 0.157-0.162. We also 
note that the G-series estimates (direct and Euler-transformed) have a 
higher degree of internal consistency than the F-series estimates. Finally, 
we note that neither series yields well-behaved exponent estimates under 
the exponential transformation of Eq. (55). 

The F and G series for the survival probability of the critical contact 
process have been analyzed similarly. When it is applied to the F(t) series, 
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the Euler transformation fails to yield useful results. The estimates for 5 
fluctuate wildly for a ~< 2, while for somewhat larger a the approximants 
attain steady, but mutually inconsistent values. (We have not found any 
explanation for the irregular behavior of the Euler-transformed series.) In 
this case, the exponential transformation yields a much more consistent 
and well-behaved set of estimates, as may be seen from Fig. 4. In fact, there 
is a remarkably narrow crossing of the estimates (again obtained from a 
set of 25 Pad6 approximants) near b=0.43, which gives 6=0.1620(5). 
A second, somewhat less distinct crossing appears near b =  1.5, giving 
6 ~0.1599. Furthermore, the approximants remain rather tightly clustered 
for b up to about 1.7, 5 ~ 0.159. We have confirmed that the behavior of 
the 5 estimates is stable under small, (9(10-5), variations in the estimate for 
2c. Turning to the G series, we obtain the values 0.158, 0.159, 0.158, 0.158, 
and 0.156 from the diagonal approximants, n = 14-18, respectively. Apply- 
ing the exponential transformation to this series yields irregular estimates 
(as for the A-model F and G series), but the Pad6 approximants to the 
Euler-transformed G series exhibit crossings at 6 =0.156, 0.161, and 0.162, 

-0.10 

-6 
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Fig. 4. Pad6 approximant estimates for the exponent 5 derived from the exponentially- 
transformed series for F[P(t)] for the contact process. Twenty-five approximants are plotted 
versus b, the transformation parameter. The inset is a detail of the crossing region. 
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while averages over all estimates for 0.01 ~< a ~< 2 yield values in the range 
0.160-0.162. Thus for the contact process we may conclude that 
6 = 0.159(3). 

Our results for the N3 model are relatively disappointing. The 
diagonal approximants yield 6 = 0.153~).156 and 0.166-0.167 for the F and 
G series, respectively. The Euler and exponential transformations yield 
generally irregular estimates, the former exhibiting somewhat diffuse 
crossing regions near 6 = 0.153(3) (Fseries) and 0.153 and 0.175 (G series). 
Thus we are unable to specify 6 for the N3 model with any precision, based 
upon the survival probability series. 

A similar analysis has been applied to the ~(t) series, which, due to 
more extensive storage requirements, can only be obtained to 24th order. 
Our estimates for the exponent r/are again based on analysis of the F and 
G transforms of the series. For the A model, diagonal approximants to the 
F series are quite useless (the [11, 11] and [12, 12] PAs yield 0.5 and 
-0.4!). Studying a set of 25 approximants to the Euler-transformed series 
(diagonals with n=8-12 ,  and the corresponding off-diagonals with 
n=m+_-1, 2), we find the estimates generally erratic. But the set does 
exhibit one rather narrow crossing, near a =0.23, ~/= 0.30-0.31. Diagonal 
approximants to the G series are better behaved, yielding r/=0.30-0.33. 
The 25 approximants to the Euler-transformed G series exhibit a more 
regular behavior, with a narrow crossing--r/=0.310(1)--near a=0.32.  
Averages over all r/values in the range 0.2-0.4 obtained with 0.01 ~< a ~< 1.2 
(the estimates attain constant values for larger a) consistently yield 
estimates in the range 0.306-0.324. For the critical contact process, a set of 
20 Pad6 approximants for the exponential transformation of the F series to 
ri(t) exhibit a crossing near b=0.23, yielding r/=0.308(2). The G-series 
estimates are fairly irregular, falling in the range 0.30-0.33. Based on these 
results, we conclude that for the contact process and the A model, r/ is 
almost surely in the range 0.3043.33, and that very likely it lies between 
0.305 and 0.320. 

The results of this analysis demonstrate that it is possible to extract 
useful exponent estimates from the P(t) and ~(t) series. The exponent 
estimates derived from the P(t) series are of modest precision, and are in 
good agreement with the estimate (3) 6=0.162(4) and with the value 
obtained using the scaling relation, 6=fl/v=O.1597(3), using our own 
estimates for the latter exponents. Our t-series estimate for r/ is also in 
agreement with the value 0.314(3) derived above in our analyses of 
subcritical series. A disadvantage of the foregoing analysis is that one does 
not know in advance which transformations will yield consistent results. 
We have tried to compensate for the empirical character of the approach 
(present, to some extent, in all series analyses) by seeking a consensus of 
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estimates obtained through a variety of methods. The results, while not of 
the highest precision, are nonetheless of interest, as they suggest that 
analysis of time series may prove useful in studies of other models. In fact, 
we expect to be able to derive t expansions for a wide variety of diffusive, 
multicomponent, and higher-dimensional models which may resist more 
conventional perturbative analysis. 

9. S U M M A R Y  A N D  D I S C U S S I O N  

We have developed perturbation methods for the long- and short-time 
behavior of particle systems with a unique absorbing state. Using these 
methods, we studied three one-dimensional models. The methods are 
readily represented as computer algorithms, and should be applicable to a 
variety of lattice models exhibiting nonequilibrium phase transitions. We 
think that the subcritical expansions and in particular the time series will 
prove to be the methods of most general utility. 

The numerical results presented in Section 8 yield precise estimates 
for the location of the critical points and the values of various critical 
exponents. Our results support the universality hypothesis for non- 
equilibrium particle systems, in that all of the models studied here belong 
to the universality class of Reggeon field theory or directed percolation. 

Based on our results, we propose the following best estimates for 
the critical exponents of the DP/RFT class in one space dimension: 
fl=0.2769(2), which is in excellent agreement with the estimate 
fl=0.2765(5) (~6) for directed percolation. From the biased exponents we 
estimate v = 1.734(2), q = 0.314(3), and z = 1.264(10). If we use the scaling 
relation (3) 6 =fl/v, we find that 6 = 0.1597(3). Using the hyperscaling rela- 
tion (3) dz=46 + 2t/, we find z =  1.266(7), in excellent agreement with the 
other estimate. Our estimates are in good agreement with earlier results, 
which yielded v=1.736(1), q=0.317(2) 6=0.160(3), and z=1.272(7) 
from high-temperature series expansions for Reggeon field theory. (18) 
Our estimate for v also agrees with the result for directed percolation 
v = 1.734(2). (44'4s) 

A P P E N D I X  A. P r o g r a m  Listing 

C Calculate super-critical expansion of the ultimate survival 

C probability for the generalized A-model in l-dimension. * 

C THE MODEL * 

C Each particle occupies single sites on a 1-dimensional lattice* 
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C Particles are annihilated at rate LAMBDA. * 

C Particles created at UNIT rate if both neighbors are occupied,* 

C and at rate ALPHA if only a single neighbor is occupied. * 

C Thus ALPHA = i corresponds to the A-model, ALPHA = I/2 to the * 

C Contact Process, and ALPHA = I/4 to the N3-model. * 

C * 

C Arrays: * 

C COEF(i): Coefficient of configuration i. * 

C IND(i) : Number of particles in configuration i. IND(i) = 0 if* 

C configuration i has not appeared in the expansion. * 

C IS(k) : An indicator binary number which is ONE at site k and* 

C ZERO everywhere else (i.e. IS(k) = 2**k). * 

C Thus IAND(IS(k),i) = 0 if i has a ZEKO at position k * 

C else it equals IS(k). * 

C NS(k) : The bitwise compliment of IS(i). NS(i) = NOT(IS(i)). * 

C RES(i) : Coefficient to LAMBDA**i in the expansion for P-inf. * 

C Variables: * 

C NORD : Final order of calculation * 

C lORD : Present order of calculation 

C ICUT : Maximal number of particles in configurations that * 

C contribute to the ultimate survival probability * 

C LSM : Size of arrays COEF and IND * 

C ALPHA : Kate of creation at sites with one occupied neighbor * 

C Subroutines: * 

C ANNOP : The annihilation operation. Does the job of W * 

C CREAOP: The creation operation. Does the job of 1/(z - V) * 

***************************************************************** 

PROGHAM TDPAMOD 

Definition of common variables 

PAKAMETEK(NOKD = 24,LSM = 2**NOHD) 
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IMPLICIT REAL*8 (A-N,O-Z) 

INTEGER*2 IND(LSM) 

COMMON/CO/COEF(LSM),RES(NORD),ALPHA 

COMMON/IN/IND,IS(O:32),NS(O:32),IORD,ICUT 

C Initialization of variables 

ALPHA = 0.25 

DO I0 I = I,LSM 

IND(I) = 0 

i0 COEF(I) = O. 

DO Ii I = 0,31 

IS(I) = 2.*I 

Ii NS(I) = NOT(IS(I)) 

K = 0 

DO 12 I = O,NORD-I 

K = K+2**I 

IND(K) = I+l 

RES(I+I) = O. 

12 COEF(K) = .5/ALPHA 

C Start of main loop 

DO 20 IORD = I,NORD 

ICUT = NORD-IORD 

RES(IORD) = -COEF(1) 

CALL ANNOP 

CALL CREAOP 

20 CONTINUE 

OPEN(1) 

WRITE(I,*) 0,I.0 

DO 30 I = I,NORD 

30 WRITE(I,*) I,RES(I) 

END 
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SUBROUTINE ANNOP 

PARAMETER(NORD = 24,LSM = 2**NORD) 

IMPLICIT KEAL~8 (A-H,O-Z) 
INTEGER*2 IND(LSM) 

COMMON/CO/COEF(LSM),RES(NORD),ALPHA 

COMMON/IN/IND,IS(O:32),NS(O:32),IORD,ICUT 

INTEGER CONF 

DO I00 CONF = 3,LSM,2 

C Go through all configurations 

IF (IND(CONF).GT.O.AND.IND(CONF).LE.(ICUT+I)) THEN 

C Operate on configurations that exist and contribute 

C Remove first particle and superfluous zeros 

NEWCONF = CONF/2 

DO Ii0 K = I,NORD 

IF (IAND(NEWCONF,I).EQ.I) GO TO 115 

!I0 NEWCONF = NEWCONF/2 

115 IND(NEWCONF) = IND(CONF)-I 

COEF(NEWCONF+I) = COEF(NEWCONF+I)+COEF(CONF) 

C Coefficients are temporarily stored at NEWCONF+I 

DO 120 K = I,NORD-I 

C Go through rest of positions, and remove particles 

NEWCONF = IAND(CONF,NS(K)) 

IF (NEWCONF.LT.CONF) THEN 

IND(NEWCONF) = IND(CONF)-I 

COEF(NEWCONF+I) = COEF(NEWCONF+I)§ 

END IF 

120 CONTINUE 

COEF(CONF+I) = -IND(CONF)*COEF(CONF)+COEF(CONF+I) 

END IF 

100 CONTINUE 

COEF(2) = -COEF(1)+COEF(2) 

123 
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130 

DO 130 J = I,LSM,2 

CDEF(J) = COEF(J+I) 

COEF(J+I) = O.DO 

END 

SUBROUTINE CREAOP 

PARAMETER(NORD = 24,LSM = 2**NORD) 

IMPLICIT REAL*8 (A-H,O-Z) 

INTEGER*2 IND(LSM) 

COMMON/CO/COEF(LSM),KES(NDRD),ALPHA 

COMMON/IN/IND,IS(O:32),NS(O:32),IORD,ICUT 

INTEGER NEW(32), CONF 

REAL~8 WEIGHT(32) 

Temporary storage for created configurations (NEW) 

and their weights (WEIGHT) 

DO 200 CONF = I,LSM,2 

Go through all configurations. 

No need to update IND as this routine does not create new 

configurations not already created in ANNOP 

NCON = 0 

IF (IND(CONF).GT.O.AND.IND(CONF).LE.ICUT) THEN 

Operate on existing configurations and configurations 

whose 'offspring' contribute to survival probability 

Create at position -1 with weight 1 

NEWCONF = CONF*2+I 

NCON = NCON+I 

NEW(NCON) = NEWCONF 

WEIGHT(NCON) = ALPHA 

DO 210 K = I,NORD 

Go through rest of positions 

IF (IAND(CONF,IS(E)).EQ.O) THEN 
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C Check if position K is vacant 

210 

220 

IF (IAND(CONF,IS(K-I)).GT.O.AND. 

IAND(CONF,IS(K+I)).GT.O) THEN 

Both neighbors occupied create with weight ! 

NEWCONF = IOR(CONF,IS(K)) 

NCON = NCON+I 

NEW(NCON) = NEWCONF 

WEIGHT(NCON) = i. 

ELSE IF (IAND(CONF,IS(K-I)).GT.O) THEN 

Left neighbor occupied create with weight ALPHA 

NEWC0NF = IOR(CONF,IS(K)) 

NCON = NCON+I 

NEW(NCON) = NEWCONF 

WEIGHT(NCON) = ALPHA 

ELSE IF (IAND(CONF,IS(K+I)).GT.0) THEN 

Right neighbor occupied create with weight ALPHA 

NEWCONF = IOE(CONF,IS(K)) 

NCDN = NCON+I 

NEW(NCON) = NEWCONF 

WEIGHT(NCON) = ALPHA 

END IF 

END IF 

CONTINUE 

END IF 

IF (NCON.GT.O) THEN 

Sum up the weigths and update COEF(CONF) 

SUM = O.DO 

DO 220 M = 1,NCON 

SUM = Siq4+WEIGHT(M) 

COEF(CONF) = COEF(CONF)/SITM 

IF (IND(CONF).LT.ICUT) THEN 

125 
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C If the offspring contribute update coefficients 

DO 230 K = 1,NCON 

NM = NEW(K) 

230 COEF(NM) = COEF(NM)+COEF(CONF)*WEIGHT(K) 

END IF 

END IF 

200 CONTINUE 

END 
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